EFIX: Exact fixed point methods for distributed optimization
نویسندگان
چکیده
Abstract We consider strongly convex distributed consensus optimization over connected networks. EFIX, the proposed method, is derived using quadratic penalty approach. In more detail, we use standard reformulation—transforming original problem into a constrained in higher dimensional space—to define sequence of suitable subproblems with increasing parameters. For objectives, corresponding consists subproblems. generic case, objective function approximated model and hence resulting again quadratic. EFIX then by solving each via fixed point (R)-linear solver, e.g., Jacobi Over-Relaxation method. The exact convergence proved as well worst case complexity order $${{\mathcal {O}}}(\epsilon ^{-1})$$ O ( ϵ - 1 ) for case. functions, result methods obtained. Numerical results indicate that method highly competitive state-of-the-art first methods, requires smaller computational communication effort, robust to choice algorithm
منابع مشابه
Fixed Point Optimization Algorithms for Distributed Optimization in Networked Systems
This paper considers a networked system with a finite number of users and deals with the problem of minimizing the sum of all users’ objective functions over the intersection of all users’ constraint sets, onto which the projection cannot be easily implemented. The main objective of this paper is to devise distributed optimization algorithms, which enable each user to find the solution of the p...
متن کاملfixed point property for banach algebras associated to locally compact groups
در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...
15 صفحه اولInterior-point methods for optimization
This article describes the current state of the art of interior-point methods (IPMs) for convex, conic, and general nonlinear optimization. We discuss the theory, outline the algorithms, and comment on the applicability of this class of methods, which have revolutionized the field over the last twenty years.
متن کاملExact and Useful Optimization Methods for Microeconomics
This paper points out that the treatment of utility maximization in current textbooks on microeconomic theory is deficient in at least three respects: breadth of coverage, completeness-cum-coherence of solution methods and mathematical correctness. Improvements are suggested in the form of a Kuhn-Tucker type theorem that has been customized for microeconomics. To ensure uniqueness of the optima...
متن کاملSteering Exact Penalty Methods for Optimization
This paper reviews, extends and analyzes a new class of penalty methods for nonlinear optimization. These methods adjust the penalty parameter dynamically; by controlling the degree of linear feasibility achieved at every iteration, they promote balanced progress toward optimality and feasibility. In contrast with classical approaches, the choice of the penalty parameter ceases to be a heuristi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Global Optimization
سال: 2022
ISSN: ['1573-2916', '0925-5001']
DOI: https://doi.org/10.1007/s10898-022-01221-4